Предыдущий билет Экзамены 2000 Следующий билет  

  Московский Государственный Автомобильно-Дорожный Институт (ТУ)
Вступительные Экзамены по Математике (2-ой Поток) 18.07.2000 г.
Билет N 1
 
  Билет N 1
 
  Билет N 2
 
  Билет N 3
 
  Билет N 4
 
  Билет N 5
 
  Билет N 6
 
  Билет N 7
 
  Билет N 8
 
  Билет N 9
 
  Билет N 10
 
  Ответы
 
  Для Печати
 
    
1
  Решить уравнение: .
   
2
  Пусть f (x) = log2 (8 x – 1). Решить уравнение f (x) = f (0.5 x + 5).
   
3
  При каком значении m сумма квадратов корней уравнения
x2 + (1 – m) x – (m + 2) = 0
наименьшая?
   
4
  При каких значениях a нижеприведенная система уравнений имеет ровно два решения .
   
5
  Решить уравнение: 2 sin 17 x + cos 5 x + sin 5 x = 0. В ответе указать число различных корней, расположенных на промежутке [0°; 20°].
   
6
  Найти сумму целых значений параметра a, при которых нижепреведенное уравнение не имеет решений: .
   
7
  На уборке урожая два комбайна работали вместе 10 дней и сверх того первый комбайн работал еше два дня. Сколько дней потребуется каждому комбайну в отдельности для выполнения всей работы, если второй комбайн может выполнить ее на 4 дня скорее, чем первый?
   
8
  Сумма трех последовательных членов, геометрической прогрессии равна 62, а сумма их десятичных логарифмов равна 3. Найти знаменатель прогрессии.
   
9
  Вычислить площадь области (x, y), задаваемой системой неравенств .
   
10
  В кубе  ABCDA'B'C'D'  со стороной 3 + расположены два шара, касающиеся внешним образом друг друга. Их радиусы относятся как 3 : 2. Один шар касается трех граней куба, прилежащих к вершине А. Другой шар касается трех граней куба, прилежащих к вершине С' (АС' - диагональ куба). Найти радиусы шаров.
   
  

  Предыдущий билет Экзамены 2000 Следующий билет  

*
Designed by © Gray Sites Co. 2000
This Page Look Better in 800x600x16bit under IE5

NO Frames in This Page
*
Используются технологии uCoz