Предыдущий билет Экзамены 2000 Следующий билет  

  Московский Государственный Автомобильно-Дорожный Институт (ТУ)
Олимпиада по Математике 30.01.2000 г.
Билет N 6
 
  Билет N 1
 
  Билет N 2
 
  Билет N 3
 
  Билет N 4
 
  Билет N 5
 
  Билет N 6
 
  Билет N 7
 
  Билет N 8
 
  Билет N 9
 
  Ответы
 
  Для Печати
 
    
1
  Найти x из уравнения .
   
2
  Даны три вектора , , . Найти координаты вектора :
= (9;0), = (0;-7), = (-7;9), = 0 + 7 + 9.
   
3
  Найти сумму целочисленных решений неравенства:
.
   
4
  Решить систему уравнений: .
   
5
  Цена каждой вещи - часов, кошелька и бумажника - выражается целым числом рублей. Часы дешевле кошелька, а кошелек дешевле бумажника. Сколько рублей могут стоито часы, если они на 27.5% процента дешевле бумажника, а кошелек стоит 176 рублей?
   
6
  Решить уравнение, найти x в градусах, если A < x < B, где значения A и B также заданы в градусах:
, A = -90, B = 90.
   
7
  Определить, при каком значении параметра a уравнение имеет ровно три различных действительных корня:
.
   
8
  Решить уравнение: , где .
   
9
  В окружности проведены хорды KL, MN, PS. Хорды KL и PS пересекаются в точке C; хорды KL и MN пересекаются в точке A; хорды MN и PS пересекаются в точке B, причем AL = CK, AM = BN, BS = 3, BC = 1, BAC=30o. Найти квадрат радиуса окружности.
   
10
  Найти наименьшее значение функции .
   
  

  Предыдущий билет Экзамены 2000 Следующий билет  

*
Designed by © Gray Sites Co. 2000
This Page Look Better in 800x600x16bit under IE5

NO Frames in This Page
*
Используются технологии uCoz